
Scala Step-by-Step — Giarrusso, Stefanesco, Timany, Birkedal, Krebbers — 1/17

Scala Step-by-Step
Soundness for DOT with Step-Indexed Logical Relations

in Iris

Paolo G. Giarrusso,
1,2

with Léo Stefanesco,
3

Amin Timany,
4

Lars

Birkedal,
4

Robbert Krebbers
2

1
BedRock Systems, Inc.

2
Del� University of Technology, The Netherlands

3
IRIF, Université de Paris & CNRS, France

4
Aarhus University, Denmark

ICFP 2020

Scala Step-by-Step
Soundness for DOT with Step-Indexed Logical Relations

in Iris

Paolo G. Giarrusso,
1,2

with Léo Stefanesco,
3

Amin Timany,
4

Lars

Birkedal,
4

Robbert Krebbers
2

1
BedRock Systems, Inc.

2
Del� University of Technology, The Netherlands

3
IRIF, Université de Paris & CNRS, France

4
Aarhus University, Denmark

ICFP 20202
0
2
0
-
0
8
-
2
6

Scala Step-by-Step

1. Hi everybody and thanks for tuning in.

2. Today I’ll present joint work with Léo Stefanesco, Amin Timany, Lars Birkedal and Robbert

Krebbers: a new approach to soundness proofs for the DOT calculus, the core of the Scala

programming language.

Scala Step-by-Step — Giarrusso, Stefanesco, Timany, Birkedal, Krebbers — 2/17

Why study Scala and DOT?

I Scala “unifies FP and OOP?”

I Expressive:

ML-like so�ware modules⇒ 1
st

-class objects

I Unlike typeclasses and ML modules

I Objects gain impredicative type members (!)

I Relatives of Type : Type
I Challenging to prove sound

Why study Scala and DOT?

I Scala “unifies FP and OOP?”

I Expressive:

ML-like so�ware modules⇒ 1
st

-class objects

I Unlike typeclasses and ML modules

I Objects gain impredicative type members (!)

I Relatives of Type : Type
I Challenging to prove sound

2
0
2
0
-
0
8
-
2
6

Scala Step-by-Step

Why study Scala and DOT?

1. Before we dive into this talk, you might ask: what’s interesting about the Scala type

system? One might answer that Scala “unifies functional and object-oriented programming”

or “has a very expressive module system”, but what does that mean?

2. In other functional programming languages, so�ware modules are expressed through

special constructs such as typeclasses or ML modules, which are not 1
st

-class and require

special abstraction mechanisms. Instead, Scala extends regular objects with abstract type

members, allowing them to serve as 1
st

-class modules. Hence, you can instantiate modules

at runtime and abstract code across modules using regular Scala abstraction mechanisms,

such as plain functions or even mixin inheritance.

3. While abstract types appear in other sound type systems, Scala abstract type members add

a significant challenge to our type soundness proof.

4. In a few slides, we show a very small example.

Scala Step-by-Step — Giarrusso, Stefanesco, Timany, Birkedal, Krebbers — 3/17

Scala’s Open Problem: Type Soundness

I First Scala version: 2003 [Odersky et al.]
X Soundness proven for DOT calculi, including:

I WadlerFest DOT [2016, Amin, Grü�er, Odersky, Rompf & Stucki]

I OOPSLA DOT [2016, Rompf & Amin]

I pDOT [2019, Rapoport & Lhoták]

× abstract types / data abstraction / parametricity?

× DOT lags behind Scala

Scala’s Open Problem: Type Soundness

I First Scala version: 2003 [Odersky et al.]
X Soundness proven for DOT calculi, including:

I WadlerFest DOT [2016, Amin, Grü�er, Odersky, Rompf & Stucki]

I OOPSLA DOT [2016, Rompf & Amin]

I pDOT [2019, Rapoport & Lhoták]

× abstract types / data abstraction / parametricity?

× DOT lags behind Scala

2
0
2
0
-
0
8
-
2
6

Scala Step-by-Step

Scala’s Open Problem: Type Soundness

1. While Scala is interesting, its type soundness has been an open question since Scala’s

introduction in 2003.

2. Soundness proofs have been machine-checked for significant Scala fragments, the DOT

calculi, an amazing success.

3. However, we have no proofs that abstract types are indeed abstract. And DOT calculi lag

behind Scala even on core features, and are not catching up: DOT is hard to extend, while

Scala’s evolution is not slowing down.

Scala Step-by-Step — Giarrusso, Stefanesco, Timany, Birkedal, Krebbers — 4/17

Our Approach: Semantics-first Design

× Preservation & progress (syntactic)

X Logical relations model

+ Type soundness

+ Data abstraction

X Retrofit DOT over model⇒ guarded DOT (gDOT):

– Guardedness restrictions (acceptable in our evaluation)

+ More extensible

+ Extra features (see later)

Our Approach: Semantics-first Design

× Preservation & progress (syntactic)

X Logical relations model

+ Type soundness

+ Data abstraction

X Retrofit DOT over model⇒ guarded DOT (gDOT):

– Guardedness restrictions (acceptable in our evaluation)

+ More extensible

+ Extra features (see later)

2
0
2
0
-
0
8
-
2
6

Scala Step-by-Step

Our Approach: Semantics-first Design

1. To create a more extensible DOT calculus, our approach avoids syntactic proofs that use

preservation and progress.

2. Instead, we built a logical relations model to prove type soundness and data abstraction.

3. Then, we have retrofi�ed a version of DOT over this model, obtaining a more extensible

DOT variant, called guarded DOT or gDOT.

4. Unfortunately, gDOT adds certain guardedness restrictions, but in our evaluation they

seem acceptable. In exchange, gDOT is more extensible, as we show through some

additional features that we’ll mention later.

Scala Step-by-Step — Giarrusso, Stefanesco, Timany, Birkedal, Krebbers — 4/17

Our Approach: Semantics-first Design

× Preservation & progress (syntactic)

X Logical relations model

+ Type soundness

+ Data abstraction

X Retrofit DOT over model⇒ guarded DOT (gDOT):

– Guardedness restrictions (acceptable in our evaluation)

+ More extensible

+ Extra features (see later)

Our Approach: Semantics-first Design

× Preservation & progress (syntactic)

X Logical relations model

+ Type soundness

+ Data abstraction

X Retrofit DOT over model⇒ guarded DOT (gDOT):

– Guardedness restrictions (acceptable in our evaluation)

+ More extensible

+ Extra features (see later)

2
0
2
0
-
0
8
-
2
6

Scala Step-by-Step

Our Approach: Semantics-first Design

1. To create a more extensible DOT calculus, our approach avoids syntactic proofs that use

preservation and progress.

2. Instead, we built a logical relations model to prove type soundness and data abstraction.

3. Then, we have retrofi�ed a version of DOT over this model, obtaining a more extensible

DOT variant, called guarded DOT or gDOT.

4. Unfortunately, gDOT adds certain guardedness restrictions, but in our evaluation they

seem acceptable. In exchange, gDOT is more extensible, as we show through some

additional features that we’ll mention later.

Scala Step-by-Step — Giarrusso, Stefanesco, Timany, Birkedal, Krebbers — 4/17

Our Approach: Semantics-first Design

× Preservation & progress (syntactic)

X Logical relations model

+ Type soundness

+ Data abstraction

X Retrofit DOT over model⇒ guarded DOT (gDOT):

– Guardedness restrictions (acceptable in our evaluation)

+ More extensible

+ Extra features (see later)

Our Approach: Semantics-first Design

× Preservation & progress (syntactic)

X Logical relations model

+ Type soundness

+ Data abstraction

X Retrofit DOT over model⇒ guarded DOT (gDOT):

– Guardedness restrictions (acceptable in our evaluation)

+ More extensible

+ Extra features (see later)

2
0
2
0
-
0
8
-
2
6

Scala Step-by-Step

Our Approach: Semantics-first Design

1. To create a more extensible DOT calculus, our approach avoids syntactic proofs that use

preservation and progress.

2. Instead, we built a logical relations model to prove type soundness and data abstraction.

3. Then, we have retrofi�ed a version of DOT over this model, obtaining a more extensible

DOT variant, called guarded DOT or gDOT.

4. Unfortunately, gDOT adds certain guardedness restrictions, but in our evaluation they

seem acceptable. In exchange, gDOT is more extensible, as we show through some

additional features that we’ll mention later.

Scala Step-by-Step — Giarrusso, Stefanesco, Timany, Birkedal, Krebbers — 4/17

Our Approach: Semantics-first Design

× Preservation & progress (syntactic)

X Logical relations model

+ Type soundness

+ Data abstraction

X Retrofit DOT over model⇒ guarded DOT (gDOT):

– Guardedness restrictions (acceptable in our evaluation)

+ More extensible

+ Extra features (see later)

Our Approach: Semantics-first Design

× Preservation & progress (syntactic)

X Logical relations model

+ Type soundness

+ Data abstraction

X Retrofit DOT over model⇒ guarded DOT (gDOT):

– Guardedness restrictions (acceptable in our evaluation)

+ More extensible

+ Extra features (see later)

2
0
2
0
-
0
8
-
2
6

Scala Step-by-Step

Our Approach: Semantics-first Design

1. To create a more extensible DOT calculus, our approach avoids syntactic proofs that use

preservation and progress.

2. Instead, we built a logical relations model to prove type soundness and data abstraction.

3. Then, we have retrofi�ed a version of DOT over this model, obtaining a more extensible

DOT variant, called guarded DOT or gDOT.

4. Unfortunately, gDOT adds certain guardedness restrictions, but in our evaluation they

seem acceptable. In exchange, gDOT is more extensible, as we show through some

additional features that we’ll mention later.

Scala Step-by-Step — Giarrusso, Stefanesco, Timany, Birkedal, Krebbers — 5/17

A Scala Example

A Scala Example

2
0
2
0
-
0
8
-
2
6

Scala Step-by-Step

A Scala Example

1. To make things concrete, let’s now look at an example of Scala code.

Scala Step-by-Step — Giarrusso, Stefanesco, Timany, Birkedal, Krebbers — 6/17

Scala Example: 1st-class Validators

We want Validators that:

X Validate Inputs from users

X Provide:

I Abstract type Vld of valid Input
I Smart constructor make : Input ⇒ Option[Vld]

I New validators can be created at runtime

I Each with a distinct abstract type Vld
I Simplifications:

I Input = Int
I Input n is valid if greater than k

Scala Example: 1st-class Validators

We want Validators that:

X Validate Inputs from users

X Provide:

I Abstract type Vld of valid Input
I Smart constructor make : Input ⇒ Option[Vld]

I New validators can be created at runtime

I Each with a distinct abstract type Vld
I Simplifications:

I Input = Int
I Input n is valid if greater than k

2
0
2
0
-
0
8
-
2
6

Scala Step-by-Step

A Scala Example

Scala Example: 1
st

-class Validators

1. In this example, we create Validator components that validate Inputs from users.

2. They provide an abstract type Valid of valid Input, and a corresponding smart constructor

make that validates its input and returns either valid data or nothing.

3. Up to this point, nothing too fancy.

4. However, new validators can be created at runtime, each with a distinct abstract type

Valid.

5. To simplify the code, we hardcode Input to Int, and an input = is valid if it is greater than : .

6. The solution is in next slide.

Scala Step-by-Step — Giarrusso, Stefanesco, Timany, Birkedal, Krebbers — 7/17

val solution = new {
type Validator = {

type Vld <: Int
val make : Int ⇒ Option[this.Vld] }

val mkValidator : Int ⇒ Validator =
k ⇒ new {

type Vld = Int
val make = n ⇒

if (n > k) Some(n) else None }
val pos = mkValidator (0)
val fails = pos.make(-1) // None
val works = pos.make (1) // Some (1)
val nope : pos.Vld = 1 // type error
val legalAges = mkValidator(// runtime args!

askUser("Legal age in your country?"))
}

val solution = new {
type Validator = {

type Vld <: Int
val make : Int ⇒ Option[this.Vld] }

val mkValidator : Int ⇒ Validator =
k ⇒ new {

type Vld = Int
val make = n ⇒

if (n > k) Some(n) else None }
val pos = mkValidator (0)
val fails = pos.make(-1) // None
val works = pos.make (1) // Some (1)
val nope : pos.Vld = 1 // type error
val legalAges = mkValidator(// runtime args!

askUser("Legal age in your country?"))
}2

0
2
0
-
0
8
-
2
6

Scala Step-by-Step

A Scala Example

1. Our solution is an object that defines a type of Validators. Inhabitants of type

Validator contain two members: the type of valid inputs, Valid, and the smart

constructor, make. Valid is declared to be a subtype of Int, the type of all inputs. That is,

type Valid has Int as upper bound,

2. and implicitly the empty type Nothing as lower bound. These bounds encode that Valid is

abstract, hence inhabitants of Valid can only be constructed through make.

3. Function makeValidator maps input k to a Validator that accepts only integers greater

than k.

4. For instance, here by calling makeValidator(0) we create a Validator called pos, which

only accepts positive integers, as shown by fails and works. The type system rejects nope
because pos.Valid is abstract, even tho it is implemented by Int, preventing users from

bypassing our smart constructor.

5. Thanks to 1
st

-class modules, we can also choose k at runtime, as done when creating

legalAges. As promised, type legalAges.Valid is a distinct abstract type.

Scala Step-by-Step — Giarrusso, Stefanesco, Timany, Birkedal, Krebbers — 7/17

val solution = new {
type Validator = {

type Vld >: Nothing <: Int
val make : Int ⇒ Option[this.Vld] }

val mkValidator : Int ⇒ Validator =
k ⇒ new {

type Vld = Int
val make = n ⇒

if (n > k) Some(n) else None }
val pos = mkValidator (0)
val fails = pos.make(-1) // None
val works = pos.make (1) // Some (1)
val nope : pos.Vld = 1 // type error
val legalAges = mkValidator(// runtime args!

askUser("Legal age in your country?"))
}

val solution = new {
type Validator = {

type Vld >: Nothing <: Int
val make : Int ⇒ Option[this.Vld] }

val mkValidator : Int ⇒ Validator =
k ⇒ new {

type Vld = Int
val make = n ⇒

if (n > k) Some(n) else None }
val pos = mkValidator (0)
val fails = pos.make(-1) // None
val works = pos.make (1) // Some (1)
val nope : pos.Vld = 1 // type error
val legalAges = mkValidator(// runtime args!

askUser("Legal age in your country?"))
}2

0
2
0
-
0
8
-
2
6

Scala Step-by-Step

A Scala Example

1. Our solution is an object that defines a type of Validators. Inhabitants of type

Validator contain two members: the type of valid inputs, Valid, and the smart

constructor, make. Valid is declared to be a subtype of Int, the type of all inputs. That is,

type Valid has Int as upper bound,

2. and implicitly the empty type Nothing as lower bound. These bounds encode that Valid is

abstract, hence inhabitants of Valid can only be constructed through make.

3. Function makeValidator maps input k to a Validator that accepts only integers greater

than k.

4. For instance, here by calling makeValidator(0) we create a Validator called pos, which

only accepts positive integers, as shown by fails and works. The type system rejects nope
because pos.Valid is abstract, even tho it is implemented by Int, preventing users from

bypassing our smart constructor.

5. Thanks to 1
st

-class modules, we can also choose k at runtime, as done when creating

legalAges. As promised, type legalAges.Valid is a distinct abstract type.

Scala Step-by-Step — Giarrusso, Stefanesco, Timany, Birkedal, Krebbers — 7/17

val solution = new {
type Validator = {

type Vld >: Nothing <: Int
val make : Int ⇒ Option[this.Vld] }

val mkValidator : Int ⇒ Validator =
k ⇒ new {

type Vld = Int
val make = n ⇒

if (n > k) Some(n) else None }
val pos = mkValidator (0)
val fails = pos.make(-1) // None
val works = pos.make (1) // Some (1)
val nope : pos.Vld = 1 // type error
val legalAges = mkValidator(// runtime args!

askUser("Legal age in your country?"))
}

val solution = new {
type Validator = {

type Vld >: Nothing <: Int
val make : Int ⇒ Option[this.Vld] }

val mkValidator : Int ⇒ Validator =
k ⇒ new {

type Vld = Int
val make = n ⇒

if (n > k) Some(n) else None }
val pos = mkValidator (0)
val fails = pos.make(-1) // None
val works = pos.make (1) // Some (1)
val nope : pos.Vld = 1 // type error
val legalAges = mkValidator(// runtime args!

askUser("Legal age in your country?"))
}2

0
2
0
-
0
8
-
2
6

Scala Step-by-Step

A Scala Example

1. Our solution is an object that defines a type of Validators. Inhabitants of type

Validator contain two members: the type of valid inputs, Valid, and the smart

constructor, make. Valid is declared to be a subtype of Int, the type of all inputs. That is,

type Valid has Int as upper bound,

2. and implicitly the empty type Nothing as lower bound. These bounds encode that Valid is

abstract, hence inhabitants of Valid can only be constructed through make.

3. Function makeValidator maps input k to a Validator that accepts only integers greater

than k.

4. For instance, here by calling makeValidator(0) we create a Validator called pos, which

only accepts positive integers, as shown by fails and works. The type system rejects nope
because pos.Valid is abstract, even tho it is implemented by Int, preventing users from

bypassing our smart constructor.

5. Thanks to 1
st

-class modules, we can also choose k at runtime, as done when creating

legalAges. As promised, type legalAges.Valid is a distinct abstract type.

Scala Step-by-Step — Giarrusso, Stefanesco, Timany, Birkedal, Krebbers — 7/17

val solution = new {
type Validator = {

type Vld >: Nothing <: Int
val make : Int ⇒ Option[this.Vld] }

val mkValidator : Int ⇒ Validator =
k ⇒ new {

type Vld = Int
val make = n ⇒

if (n > k) Some(n) else None }
val pos = mkValidator (0)
val fails = pos.make(-1) // None
val works = pos.make (1) // Some (1)
val nope : pos.Vld = 1 // type error
val legalAges = mkValidator(// runtime args!

askUser("Legal age in your country?"))
}

val solution = new {
type Validator = {

type Vld >: Nothing <: Int
val make : Int ⇒ Option[this.Vld] }

val mkValidator : Int ⇒ Validator =
k ⇒ new {

type Vld = Int
val make = n ⇒

if (n > k) Some(n) else None }
val pos = mkValidator (0)
val fails = pos.make(-1) // None
val works = pos.make (1) // Some (1)
val nope : pos.Vld = 1 // type error
val legalAges = mkValidator(// runtime args!

askUser("Legal age in your country?"))
}2

0
2
0
-
0
8
-
2
6

Scala Step-by-Step

A Scala Example

1. Our solution is an object that defines a type of Validators. Inhabitants of type

Validator contain two members: the type of valid inputs, Valid, and the smart

constructor, make. Valid is declared to be a subtype of Int, the type of all inputs. That is,

type Valid has Int as upper bound,

2. and implicitly the empty type Nothing as lower bound. These bounds encode that Valid is

abstract, hence inhabitants of Valid can only be constructed through make.

3. Function makeValidator maps input k to a Validator that accepts only integers greater

than k.

4. For instance, here by calling makeValidator(0) we create a Validator called pos, which

only accepts positive integers, as shown by fails and works. The type system rejects nope
because pos.Valid is abstract, even tho it is implemented by Int, preventing users from

bypassing our smart constructor.

5. Thanks to 1
st

-class modules, we can also choose k at runtime, as done when creating

legalAges. As promised, type legalAges.Valid is a distinct abstract type.

Scala Step-by-Step — Giarrusso, Stefanesco, Timany, Birkedal, Krebbers — 7/17

val solution = new {
type Validator = {

type Vld >: Nothing <: Int
val make : Int ⇒ Option[this.Vld] }

val mkValidator : Int ⇒ Validator =
k ⇒ new {

type Vld = Int
val make = n ⇒

if (n > k) Some(n) else None }
val pos = mkValidator (0)
val fails = pos.make(-1) // None
val works = pos.make (1) // Some (1)
val nope : pos.Vld = 1 // type error
val legalAges = mkValidator(// runtime args!

askUser("Legal age in your country?"))
}

val solution = new {
type Validator = {

type Vld >: Nothing <: Int
val make : Int ⇒ Option[this.Vld] }

val mkValidator : Int ⇒ Validator =
k ⇒ new {

type Vld = Int
val make = n ⇒

if (n > k) Some(n) else None }
val pos = mkValidator (0)
val fails = pos.make(-1) // None
val works = pos.make (1) // Some (1)
val nope : pos.Vld = 1 // type error
val legalAges = mkValidator(// runtime args!

askUser("Legal age in your country?"))
}2

0
2
0
-
0
8
-
2
6

Scala Step-by-Step

A Scala Example

1. Our solution is an object that defines a type of Validators. Inhabitants of type

Validator contain two members: the type of valid inputs, Valid, and the smart

constructor, make. Valid is declared to be a subtype of Int, the type of all inputs. That is,

type Valid has Int as upper bound,

2. and implicitly the empty type Nothing as lower bound. These bounds encode that Valid is

abstract, hence inhabitants of Valid can only be constructed through make.

3. Function makeValidator maps input k to a Validator that accepts only integers greater

than k.

4. For instance, here by calling makeValidator(0) we create a Validator called pos, which

only accepts positive integers, as shown by fails and works. The type system rejects nope
because pos.Valid is abstract, even tho it is implemented by Int, preventing users from

bypassing our smart constructor.

5. Thanks to 1
st

-class modules, we can also choose k at runtime, as done when creating

legalAges. As promised, type legalAges.Valid is a distinct abstract type.

Scala Step-by-Step — Giarrusso, Stefanesco, Timany, Birkedal, Krebbers — 8/17

Example Summary

I 1
st

-class modules with abstract types ↦→
Scala objects with (bounded) abstract type members:

Γ ` ! <:) <: *
Γ ` {type A =) } : {type A >: ! <:* }

I impredicative type members (!)

I types (Validator) with nested type members (Vld) are regular types,

not “large” types; e.g., Validator can be a type member.

Example Summary

I 1
st

-class modules with abstract types ↦→
Scala objects with (bounded) abstract type members:

Γ ` ! <:) <: *
Γ ` {type A =) } : {type A >: ! <:* }

I impredicative type members (!)

I types (Validator) with nested type members (Vld) are regular types,

not “large” types; e.g., Validator can be a type member.

2
0
2
0
-
0
8
-
2
6

Scala Step-by-Step

A Scala Example

Example Summary

1. This small example already uses many Scala features: in Scala 1
st

-class modules with

abstract types are encoded as objects with bounded type members.

2. We’ve used the typing rule for type member introduction: a type definition {type A =) }
inhabits a bounded type declarations {type A >: ! <:* }) if) is between bounds ! and* .

3. We’ve even used impredicative type members! Types like Validator, with nested type

members like Valid, are still regular types, not “large” types, and are subject to regular

abstractions; so for instance, Validator can in turn be a type member.

Scala Step-by-Step — Giarrusso, Stefanesco, Timany, Birkedal, Krebbers — 9/17

Sketching Our Soundness Proof

Sketching Our Soundness Proof

2
0
2
0
-
0
8
-
2
6

Scala Step-by-Step

Sketching Our Soundness Proof

1. Next, we sketch how we prove type soundness. We’ll oversimplify in this talk and leave the

rest to the paper.

Scala Step-by-Step — Giarrusso, Stefanesco, Timany, Birkedal, Krebbers — 10/17

Logical relation models
Type) ↦→ set of valuesVJ) K:

VJ (∧) K , VJ (K ∩VJ) K

Syn. typing judgment ` � ↦→ sem. typing judgment � � :
� (<:) , VJ (K ⊆ VJ) K
� 4 :) , 4 runs safely with result inVJ) K

Typing rule ↦→ typing lemma:

� (∧) <: (⇔ VJ (∧) K ⊆ VJ (K

Result: extensible type soundness!

Logical relation models
Type) ↦→ set of valuesVJ) K:

VJ (∧) K , VJ (K ∩VJ) K

Syn. typing judgment ` � ↦→ sem. typing judgment � � :
� (<:) , VJ (K ⊆ VJ) K
� 4 :) , 4 runs safely with result inVJ) K

Typing rule ↦→ typing lemma:

� (∧) <: (⇔ VJ (∧) K ⊆ VJ (K

Result: extensible type soundness!2
0
2
0
-
0
8
-
2
6

Scala Step-by-Step

Sketching Our Soundness Proof

Logical relation models

1. Our model uses a logical relation. We map each type) to a set “V of T” of values that

behave as required by type) .

2. For instance, intersection types are interpreted using set intersection. The set “+ of (and) ”

is the intersection of + of (and + of) .

3. Then, we map syntactic typing judgments to semantic typing judgments. For instance, (is

a subtype of) ifVJ (K is a subset ofVJ) K. Crucially, an expression 4 has semantic type)

if 4 runs safely and any result is inVJ) K; hence semantically typed expressions are

type-safe by definition.

4. Then, we map each typing rule to a typing lemma about semantic typing judgments that

we must prove. For instance, type (and) is a subtype of (because “+ of (and) “ is a

subset of “+ of (”.

5. We now have a type soundness proof that is extensible: proving new typing lemmas cannot

invalidate old ones, because each lemma is proved independently.

Scala Step-by-Step — Giarrusso, Stefanesco, Timany, Birkedal, Krebbers — 11/17

Types Members, Naively

VJ {type A >: ! <:* } K , {E | ∃i. E .A↘ i ∧
VJ! K ⊆ i ⊆ VJ* K}

SemType , SemVal → Prop

SemVal � . . . +
(
Label

�n−⇀ (SemVal + SemType)
)

SemVal � . . . +
(
Label

�n−⇀ (SemVal + (SemVal → Prop))
)

Types Members, Naively

VJ {type A >: ! <:* } K , {E | ∃i. E .A↘ i ∧
VJ! K ⊆ i ⊆ VJ* K}

SemType , SemVal → Prop

SemVal � . . . +
(
Label

�n−⇀ (SemVal + SemType)
)

SemVal � . . . +
(
Label

�n−⇀ (SemVal + (SemVal → Prop))
)

2
0
2
0
-
0
8
-
2
6

Scala Step-by-Step

Sketching Our Soundness Proof

Types Members, Naively

1. Here’s a naive model of impredicative type members. An object E has type member A in

bounds ! and* if E .� contains type i between bounds ! and* .

2. Metavariables i and E range over sets of semantic types and values, defined as follows:

Types are sets of values, represented as membership predicates. And values can be (among

other things) objects, that is, finite maps from field labels to values or types.

3. However, this definition is illegal: inlining SemType shows we’re defining SemVal by

negative recursion, which is illegal.

4. This problem is exclusive to impredicative type members.

Scala Step-by-Step — Giarrusso, Stefanesco, Timany, Birkedal, Krebbers — 11/17

Types Members, Naively

VJ {type A >: ! <:* } K , {E | ∃i. E .A↘ i ∧
VJ! K ⊆ i ⊆ VJ* K}

SemType , SemVal → Prop

SemVal � . . . +
(
Label

�n−⇀ (SemVal + SemType)
)

SemType , SemVal → Prop

SemVal � . . . +
(
Label

�n−⇀ (SemVal + SemType)
)

SemVal � . . . +
(
Label

�n−⇀ (SemVal + (SemVal → Prop))
)

Types Members, Naively

VJ {type A >: ! <:* } K , {E | ∃i. E .A↘ i ∧
VJ! K ⊆ i ⊆ VJ* K}

SemType , SemVal → Prop

SemVal � . . . +
(
Label

�n−⇀ (SemVal + SemType)
)

SemType , SemVal → Prop

SemVal � . . . +
(
Label

�n−⇀ (SemVal + SemType)
)

SemVal � . . . +
(
Label

�n−⇀ (SemVal + (SemVal → Prop))
)

2
0
2
0
-
0
8
-
2
6

Scala Step-by-Step

Sketching Our Soundness Proof

Types Members, Naively

1. Here’s a naive model of impredicative type members. An object E has type member A in

bounds ! and* if E .� contains type i between bounds ! and* .

2. Metavariables i and E range over sets of semantic types and values, defined as follows:

Types are sets of values, represented as membership predicates. And values can be (among

other things) objects, that is, finite maps from field labels to values or types.

3. However, this definition is illegal: inlining SemType shows we’re defining SemVal by

negative recursion, which is illegal.

4. This problem is exclusive to impredicative type members.

Scala Step-by-Step — Giarrusso, Stefanesco, Timany, Birkedal, Krebbers — 11/17

Types Members, Naively

VJ {type A >: ! <:* } K , {E | ∃i. E .A↘ i ∧
VJ! K ⊆ i ⊆ VJ* K}

SemType , SemVal → Prop

SemVal � . . . +
(
Label

�n−⇀ (SemVal + SemType)
)

SemVal � . . . +
(
Label

�n−⇀ (SemVal + (SemVal → Prop))
)

Types Members, Naively

VJ {type A >: ! <:* } K , {E | ∃i. E .A↘ i ∧
VJ! K ⊆ i ⊆ VJ* K}

SemType , SemVal → Prop

SemVal � . . . +
(
Label

�n−⇀ (SemVal + SemType)
)

SemVal � . . . +
(
Label

�n−⇀ (SemVal + (SemVal → Prop))
)

2
0
2
0
-
0
8
-
2
6

Scala Step-by-Step

Sketching Our Soundness Proof

Types Members, Naively

1. Here’s a naive model of impredicative type members. An object E has type member A in

bounds ! and* if E .� contains type i between bounds ! and* .

2. Metavariables i and E range over sets of semantic types and values, defined as follows:

Types are sets of values, represented as membership predicates. And values can be (among

other things) objects, that is, finite maps from field labels to values or types.

3. However, this definition is illegal: inlining SemType shows we’re defining SemVal by

negative recursion, which is illegal.

4. This problem is exclusive to impredicative type members.

Scala Step-by-Step — Giarrusso, Stefanesco, Timany, Birkedal, Krebbers — 11/17

Types Members, Naively

VJ {type A >: ! <:* } K , {E | ∃i. E .A↘ i ∧
VJ! K ⊆ i ⊆ VJ* K}

SemType , SemVal → Prop

SemVal � . . . +
(
Label

�n−⇀ (SemVal + SemType)
)

SemVal � . . . +
(
Label

�n−⇀ (SemVal + (SemVal → Prop))
)

I Unsound negative recursion!

I Exclusive to impredicative type members.

Types Members, Naively

VJ {type A >: ! <:* } K , {E | ∃i. E .A↘ i ∧
VJ! K ⊆ i ⊆ VJ* K}

SemType , SemVal → Prop

SemVal � . . . +
(
Label

�n−⇀ (SemVal + SemType)
)

SemVal � . . . +
(
Label

�n−⇀ (SemVal + (SemVal → Prop))
)

I Unsound negative recursion!

I Exclusive to impredicative type members.2
0
2
0
-
0
8
-
2
6

Scala Step-by-Step

Sketching Our Soundness Proof

Types Members, Naively

1. Here’s a naive model of impredicative type members. An object E has type member A in

bounds ! and* if E .� contains type i between bounds ! and* .

2. Metavariables i and E range over sets of semantic types and values, defined as follows:

Types are sets of values, represented as membership predicates. And values can be (among

other things) objects, that is, finite maps from field labels to values or types.

3. However, this definition is illegal: inlining SemType shows we’re defining SemVal by

negative recursion, which is illegal.

4. This problem is exclusive to impredicative type members.

Scala Step-by-Step — Giarrusso, Stefanesco, Timany, Birkedal, Krebbers — 11/17

Types Members, Naively

VJ {type A >: ! <:* } K , {E | ∃i. E .A↘ i ∧
VJ! K ⊆ i ⊆ VJ* K}

SemType , SemVal → Prop

SemVal � . . . +
(
Label

�n−⇀ (SemVal + SemType)
)

SemVal � . . . +
(
Label

�n−⇀ (SemVal + (SemVal → Prop))
)

I Unsound negative recursion!

I Exclusive to impredicative type members.

Types Members, Naively

VJ {type A >: ! <:* } K , {E | ∃i. E .A↘ i ∧
VJ! K ⊆ i ⊆ VJ* K}

SemType , SemVal → Prop

SemVal � . . . +
(
Label

�n−⇀ (SemVal + SemType)
)

SemVal � . . . +
(
Label

�n−⇀ (SemVal + (SemVal → Prop))
)

I Unsound negative recursion!

I Exclusive to impredicative type members.2
0
2
0
-
0
8
-
2
6

Scala Step-by-Step

Sketching Our Soundness Proof

Types Members, Naively

1. Here’s a naive model of impredicative type members. An object E has type member A in

bounds ! and* if E .� contains type i between bounds ! and* .

2. Metavariables i and E range over sets of semantic types and values, defined as follows:

Types are sets of values, represented as membership predicates. And values can be (among

other things) objects, that is, finite maps from field labels to values or types.

3. However, this definition is illegal: inlining SemType shows we’re defining SemVal by

negative recursion, which is illegal.

4. This problem is exclusive to impredicative type members.

Scala Step-by-Step — Giarrusso, Stefanesco, Timany, Birkedal, Krebbers — 12/17

Type Members, Soundly with Iris

VJ {type A >: ! <:* } K , {E | ∃i. E .A↘ i ∧
⊲ VJ! K ⊆ ⊲ i ⊆ ⊲ VJ* K}

SemType , SemVal → iProp

SemVal � . . . +
(
Label

�n−⇀ (SemVal + I SemType)
)

SemVal � . . . +
(
Label

�n−⇀ (SemVal + SemVal → Prop)
)

+ Solution: Guard recursion, i.e., “truncate” SemTypes with the

later functor I from Iris.

+ Reason about solution using Iris logic, ignoring details of

construction.

Type Members, Soundly with Iris

VJ {type A >: ! <:* } K , {E | ∃i. E .A↘ i ∧
⊲ VJ! K ⊆ ⊲ i ⊆ ⊲ VJ* K}

SemType , SemVal → iProp

SemVal � . . . +
(
Label

�n−⇀ (SemVal + I SemType)
)

SemVal � . . . +
(
Label

�n−⇀ (SemVal + SemVal → Prop)
)

+ Solution: Guard recursion, i.e., “truncate” SemTypes with the

later functor I from Iris.

+ Reason about solution using Iris logic, ignoring details of

construction.2
0
2
0
-
0
8
-
2
6

Scala Step-by-Step

Sketching Our Soundness Proof

Type Members, Soundly with Iris

1. Thankfully, abstract step-indexing allows us to construct SemVal with a small change to our

recursive equation. We must guard the recursion, that is, storing types into values must

truncate types using Iris’s later functor.

2. I won’t explain what exactly that means. We can ignore details and reason about the

solution to this equation using the Iris logic.

3. Most of the logical relation is identical to the naive model, except for type members. Since

values only contain truncated type members, assertions about type members must be

weakened, using the later modality.

Scala Step-by-Step — Giarrusso, Stefanesco, Timany, Birkedal, Krebbers — 12/17

Type Members, Soundly with Iris

VJ {type A >: ! <:* } K , {E | ∃i. E .A↘ i ∧
⊲ VJ! K ⊆ ⊲ i ⊆ ⊲ VJ* K}

SemType , SemVal → iProp

SemVal � . . . +
(
Label

�n−⇀ (SemVal + I SemType)
)

SemVal � . . . +
(
Label

�n−⇀ (SemVal + SemVal → Prop)
)

– Assertions about i are weakened through later modality ⊲

Type Members, Soundly with Iris

VJ {type A >: ! <:* } K , {E | ∃i. E .A↘ i ∧
⊲ VJ! K ⊆ ⊲ i ⊆ ⊲ VJ* K}

SemType , SemVal → iProp

SemVal � . . . +
(
Label

�n−⇀ (SemVal + I SemType)
)

SemVal � . . . +
(
Label

�n−⇀ (SemVal + SemVal → Prop)
)

– Assertions about i are weakened through later modality ⊲

2
0
2
0
-
0
8
-
2
6

Scala Step-by-Step

Sketching Our Soundness Proof

Type Members, Soundly with Iris

1. Thankfully, abstract step-indexing allows us to construct SemVal with a small change to our

recursive equation. We must guard the recursion, that is, storing types into values must

truncate types using Iris’s later functor.

2. I won’t explain what exactly that means. We can ignore details and reason about the

solution to this equation using the Iris logic.

3. Most of the logical relation is identical to the naive model, except for type members. Since

values only contain truncated type members, assertions about type members must be

weakened, using the later modality.

Scala Step-by-Step — Giarrusso, Stefanesco, Timany, Birkedal, Krebbers — 13/17

Retrofi�ing DOT over Model: gDOT
I Turn rules from pDOT/OOPSLA DOT into typing lemmas

appropriate to the model; each proof is around 2-10 lines of

Coq.

I Add type ⊲) withVJ ⊲) K , ⊲VJ) K and associated typing

rules (!)

+ Stronger/additional rules

+ Abstract types in nested objects (mutual information hiding), as in

example

+ Distributivity of ∧, ∨, . . .

+ Subtyping for recursive types (beyond OOPSLA DOT)

+ (Arguably) more principled restrictions

Retrofi�ing DOT over Model: gDOT
I Turn rules from pDOT/OOPSLA DOT into typing lemmas

appropriate to the model; each proof is around 2-10 lines of

Coq.

I Add type ⊲) withVJ ⊲) K , ⊲VJ) K and associated typing

rules (!)

+ Stronger/additional rules

+ Abstract types in nested objects (mutual information hiding), as in

example

+ Distributivity of ∧, ∨, . . .

+ Subtyping for recursive types (beyond OOPSLA DOT)

+ (Arguably) more principled restrictions2
0
2
0
-
0
8
-
2
6

Scala Step-by-Step

Sketching Our Soundness Proof

Retrofi�ing DOT over Model: gDOT

1. Adapt rules from past DOT calculi to match the model.

2. Add type ⊲) , reflecting the later modality, and (quite a few) associated typing rules.

3. Some rules become stronger; in other cases, restrictions become more principled,

4. We obtain guarded DOT (gDOT), i.e., DOT with guardedness restrictions.

Scala Step-by-Step — Giarrusso, Stefanesco, Timany, Birkedal, Krebbers — 14/17

gDOT key typing rules

Γ `P ? : {A >: ! <:* }
Γ ` ⊲ ! <: ?.A <: ⊲ *

(<:-Sel, Sel-<:)
Γ ` 4 : ⊲)

Γ ` coerce 4 :)
(T-Coerce)

Γ | G : ⊲) ` {3} :)
Γ ` aG . {3} : `G .)

(T-{}-I)
Γ, G : + ` E :) tight)

Γ | G : + ` {a = E} : {a :) }
(D-Val)

gDOT key typing rules

Γ `P ? : {A >: ! <:* }
Γ ` ⊲ ! <: ?.A <: ⊲ *

(<:-Sel, Sel-<:)
Γ ` 4 : ⊲)

Γ ` coerce 4 :)
(T-Coerce)

Γ | G : ⊲) ` {3} :)
Γ ` aG . {3} : `G .)

(T-{}-I)
Γ, G : + ` E :) tight)

Γ | G : + ` {a = E} : {a :) }
(D-Val)

2
0
2
0
-
0
8
-
2
6

Scala Step-by-Step

Sketching Our Soundness Proof

gDOT key typing rules

1. Rules (<:-Sel, Sel-<:) reflect the guardedness restrictions on type members. Rule (T-Coerce)

shows how to eliminate ⊲ in many cases, by adding no-op coercions to terms.

2. Rule (T-{}-I) allows introducing recursive objects. To prevent certain circular typing

derivations, we avoid the ad-hoc fixes of other DOT calculi, and guard against recursive

self-references by adding ⊲ to the type of self-variable G .

3. Rule (D-Val) allows to nest objects in objects. Unlike pDOT, in gDOT nested objects support

abstract type members, and this is possible because of the restriction we added to the rule

for object introduction.

Scala Step-by-Step — Giarrusso, Stefanesco, Timany, Birkedal, Krebbers — 15/17

Contributions/In the paper

I Motivating examples for novel features

I Scale model to gDOT

I `-types, singleton types, path-dependent functions, paths(!), . . .

I Demonstrate expressivity despite guardedness restriction

I Data abstraction proofs

I Coq mechanization using Iris (soundness: ≈ 9200 LoC;

examples: ≈ 5600 LoC)

Contributions/In the paper

I Motivating examples for novel features

I Scale model to gDOT

I `-types, singleton types, path-dependent functions, paths(!), . . .

I Demonstrate expressivity despite guardedness restriction

I Data abstraction proofs

I Coq mechanization using Iris (soundness: ≈ 9200 LoC;

examples: ≈ 5600 LoC)

2
0
2
0
-
0
8
-
2
6

Scala Step-by-Step

Sketching Our Soundness Proof

Contributions/In the paper

1. In the paper:

2. We give motivating examples for some of our novel features.

3. We scale this model to full gDOT, with mu types, singleton types, path-dependent

functions, paths, and so on.

4. We demonstrate expressivity despite the restrictions to type members

5. We give proofs about data abstraction.

6. Mechanize everything in Coq using Iris.

Scala Step-by-Step — Giarrusso, Stefanesco, Timany, Birkedal, Krebbers — 16/17

Future work

I Type projections

I Higher-kinds

I Elaboration from calculi closer to Scala, and ⊲-inference

I Applications to other type systems with impredicative type

members/virtual classes

Future work

I Type projections

I Higher-kinds

I Elaboration from calculi closer to Scala, and ⊲-inference

I Applications to other type systems with impredicative type

members/virtual classes

2
0
2
0
-
0
8
-
2
6

Scala Step-by-Step

Sketching Our Soundness Proof

Future work

1. We are extending our model to type projections and higher kinds.

2. Scala users don’t write ⊲, but can they be inferred during elaboration?

3. Finally we hope these techniques can be extended to other object-oriented type systems

with impredicative type members or virtual classes.

Scala Step-by-Step — Giarrusso, Stefanesco, Timany, Birkedal, Krebbers — 17/17

Conclusions

I Scala needs extensible type-soundness⇒ semantics-first

I Challenge: impredicative type members

I Iris enabled machine-checking solution conveniently in Coq

Conclusions

I Scala needs extensible type-soundness⇒ semantics-first

I Challenge: impredicative type members

I Iris enabled machine-checking solution conveniently in Coq

2
0
2
0
-
0
8
-
2
6

Scala Step-by-Step

Sketching Our Soundness Proof

Conclusions

1. Scala’s type system needs extensible type-soundness proofs, so we use design our

type-system semantics-first.

2. The challenge was that impredicative type members are crucial for Scala’s expressivity, but

hard to support.

3. Iris was essential to design and machine-check our model.

	A Scala Example
	Sketching Our Soundness Proof

