D.pure_program_logic.weakestpre
D.pure_program_logic.lifting
D.pure_program_logic.adequacy
D.iris_extra.det_reduction
D.iris_extra.cmra_prop_lift
D.iris_extra.dlang
D.iris_extra.iris_prelude
- Notation for functions in the Iris scope.
- Automation for Iris program logic.
- Setoid rewriting
- Tactics for manipulating and using Proper instances.
D.iris_extra.lty
- Formalize infrastructure for semantic types; not shown in the paper.
- "Open Logical TYpes": persistent Iris predicates over environments and values.
D.iris_extra.persistence
- Show all of Iris propositions are persistent when resources are idempotent (like in our case).
- Show that our actual resources satisfy CmraPersistent.
D.iris_extra.proofmode_extra
D.iris_extra.pupd
D.iris_extra.proofmode_pupd
D.iris_extra.saved_interp_dep
D.iris_extra.saved_interp_n
D.iris_extra.swap_later_impl
D.prelude
D.asubst_intf
D.asubst_base
D.proper
D.succ_notation
D.numbers
D.tactics
D.Dot.syn.syn
D.Dot.syn.rules
D.Dot.syn.path_repl
D.Dot.syn.path_repl_lemmas
D.Dot.syn.lr_syn_aux
D.Dot.syn.drop_skips
D.Dot.syn.skeleton
D.Dot.syn.core_stamping_defs
D.Dot.syn.traversals
D.Dot.lr.dlang_inst
D.Dot.lr.dot_lty
D.Dot.lr.path_wp
D.Dot.lr.dot_semtypes
D.Dot.lr.unary_lr
D.Dot.lr.sem_unstamped_typing
D.Dot.semtyp_lemmas.later_sub_sem
D.Dot.semtyp_lemmas.binding_lr
D.Dot.semtyp_lemmas.defs_lr
D.Dot.semtyp_lemmas.dsub_lr
D.Dot.semtyp_lemmas.path_repl_lr
D.Dot.semtyp_lemmas.prims_lr
D.Dot.semtyp_lemmas.tproj_lr
D.Dot.syntyp_lemmas.binding_lr_syn
D.Dot.syntyp_lemmas.dsub_lr_syn
D.Dot.syntyp_lemmas.path_repl_lr_syn
D.Dot.syntyp_lemmas.prims_lr_syn
D.Dot.syntyp_lemmas.later_sub_syn
D.Dot.typing.subtyping
D.Dot.typing.type_eq
D.Dot.typing.typing
D.Dot.typing.typing_aux_defs
D.Dot.fundamental
D.Dot.examples.ex_utils
D.Dot.examples.hoas
D.Dot.examples.hoas_ex_utils
D.Dot.examples.stamping.unstampedness_binding
D.Dot.examples.old_typing.old_subtyping
D.Dot.examples.old_typing.old_subtyping_derived_rules
D.Dot.examples.old_typing.old_unstamped_typing
D.Dot.examples.old_typing.old_unstamped_typing_derived_rules
D.Dot.examples.old_typing.old_unstamped_typing_to_typing
D.Dot.examples.old_fundamental
D.Dot.examples.sem.semtyp_lemmas.sub_lr
D.Dot.examples.sem.semtyp_lemmas.examples_lr
D.Dot.examples.sem.syntyp_lemmas.sub_lr_syn
D.Dot.examples.sem.syntyp_lemmas.examples_lr_syn
D.Dot.examples.sem.ex_iris_utils
D.Dot.examples.sem.no_russell_paradox
D.Dot.examples.sem.prim_boolean_option
D.Dot.examples.sem.storeless_typing
D.Dot.examples.sem.storeless_typing_ex
D.Dot.examples.sem.storeless_typing_ex_utils
D.Dot.examples.sem.from_pdot_mutual_rec_sem
D.Dot.examples.sem.small_sem_ex
D.Dot.examples.sem.positive_div
D.Dot.examples.syn.from_pdot_mutual_rec
D.Dot.examples.syn.list
- Encoding covariant lists.
- Interface of the list module.
- Implementation of the list module.
- Auxiliary types, needed in derivations of typing judgments.
- Lemmas for proof that hlistModV has type hlistModT.
- Proof that hlistModV has type hlistModT.
- Link lists with booleans.
- Link lists with booleans and with a client using the list API.
D.Dot.examples.syn.old_unstamped_typing_ex
D.Dot.examples.syn.scala_lib
D.Dot.examples.syn.syn_lemmas
D.Dot.hkdot.sem_kind
D.Dot.hkdot.sem_kind_dot
D.Dot.hkdot.hkdot
- Prefixes: K for Kinding, KStp for kinded subtyping, Skd for subkinding.
- Subkinding
- Kinded subtyping.
- Kinding