D.iris_extra.lty

Formalize infrastructure for semantic types; not shown in the paper.

In Iris one represents semantic types as persistent Iris predicates on values. Since D* syntactic types can contain variables ranging on values, semantic types take a value substitution as argument.
Using Autosubst, we can define substitution on semantic types by precomposition: τ.|[s] = λ ρ, τ >> s) .
All this infrastructure works for arbitrary languages implementing ValuesSig.
From Coq Require FunctionalExtensionality.
From iris.algebra Require Import list.
From iris.proofmode Require Import proofmode.
From iris.program_logic Require Import language.
From D.pure_program_logic Require Import lifting adequacy.
From D Require Import prelude iris_prelude asubst_intf dlang proper.

Implicit Types (Σ : gFunctors).

#[global] Instance bottom_fun {A} `{Bottom B} : Bottom (A B) := (λ _, ).
#[global] Instance top_fun {A} `{Top B} : Top (A B) := (λ _, ).
#[global] Instance bottom_ofe_fun {A} {B : ofe} `{Bottom B} : Bottom (A -d> B) := (λ _, ).
#[global] Instance top_ofe_fun {A} {B : ofe} `{Top B} : Top (A -d> B) := (λ _, ).

"Iris Persistent Predicates" iPPred.

We use such predicates also for definition bodies and definition lists. Adapted from https://gitlab.mpi-sws.org/iris/examples/blob/d4f4153920ea82617c7222aeeb00b6710d51ee03/theories/logrel_heaplang/ltyping.vL5.

Record iPPred vl Σ := IPPred {
  iPPred_car :> vl iProp Σ;
  iPPred_persistent v : Persistent (iPPred_car v);
}.
Add Printing Constructor iPPred.
#[global] Arguments IPPred {_ _} _%I {_}.
#[global] Arguments iPPred_car {_ _} !_ _ /.
Declare Scope iPPred_scope.
Bind Scope iPPred_scope with iPPred.
Delimit Scope iPPred_scope with T.
#[global] Existing Instance iPPred_persistent.

OFE on iPPred.

Section iPPred_ofe.
  Context {vl : Type} {Σ}.
  Notation vpred := (iPPred vl Σ).
  Implicit Types (ψ : vl -d> iPropO Σ) (τ : vpred).

  (* Forces inserting coercions to -d>. *)
  Notation lApp := (iPPred_car : iPPred _ _ _ -d> _).

  Instance iPPred_equiv : Equiv vpred := λ A B, lApp A B.
  Instance iPPred_dist : Dist vpred := λ n A B, lApp A ≡{n}≡ B.
  Lemma iPPred_ofe_mixin : OfeMixin vpred.
  Proof. by apply (iso_ofe_mixin lApp). Qed.
  Canonical Structure iPPredO := Ofe vpred iPPred_ofe_mixin.

  Lemma iPPred_equivI {τ1 τ2 : iPPred vl Σ} :
    iPPred_car τ1 ≡@{vl -d> _} iPPred_car τ2 ⊣⊢@{iPropI Σ} τ1 τ2.
  Proof. by uPred.unseal. Qed.

Show iPPred forms a COFE.

Only needed to define Lty using Iris fixpoints (e.g. for normal recursive types), so currently unused.
  Definition pred_persistent (A : vl -d> iPropO Σ) := w, Persistent (A w).

  #[local] Instance: LimitPreserving pred_persistent.
  Proof.
    apply limit_preserving_forallv.
    apply bi.limit_preserving_Persistentn f g Heq. exact: Heq.
  Qed.

  #[global] Instance iPPred_cofe : Cofe iPPredO.
  Proof.
    by apply: (iso_cofe_subtype' pred_persistent IPPred lApp); first case.
  Qed.

  #[global] Instance bottom_iprop : Bottom (iProp Σ) := False%I.
  #[global] Instance top_iprop : Top (iProp Σ) := True%I.

  #[global] Instance bottom_ippred {s} : Bottom (iPPred s Σ) := IPPred (λ _, ).
  #[global] Instance top_ippred {s} : Top (iPPred s Σ) := IPPred (λ _, ).

  #[global] Instance iPPred_inhabited : Inhabited vpred := populate .

  #[global] Instance iPPred_car_ne n : Proper (dist n ==> (=) ==> dist n) (@iPPred_car vl Σ).
  Proof. by intros A A' HA w ? <-. Qed.
  #[global] Instance iPPred_car_proper : Proper ((≡) ==> (=) ==> (≡)) (@iPPred_car vl Σ).
  Proof. by intros A A' HA w ? <-. Qed.

  Lemma lty_eq τ1 τ2 : iPPred_car τ1 = iPPred_car τ2 τ1 = τ2.
  Proof.
    move: τ1 τ2 ⇒ [φ1 Hp1] [φ2 Hp2]. rewrite /iPPred_car.
    intros →. f_equal. exact: ProofIrrelevance.proof_irrelevance.
  Qed.
End iPPred_ofe.

#[global] Arguments iPPredO : clear implicits.

Module Type Lty (Import VS : VlSortsSig) (Import LVS : LiftWp VS).

"Logical TYpes": persistent Iris predicates over values.

Notation lty := (iPPred vl).
Notation ltyO := (iPPredO vl).
Notation Lty := (IPPred (vl := vl)).
Notation lty_car := (iPPred_car (vl := vl)) (only parsing).
(* Forces inserting coercions to -d>. *)
Notation lApp := (iPPred_car : lty _ _ -d> _).

Notation iRel P Σ := (P Σ P Σ iProp Σ).
Definition subtype_lty {Σ} : iRel ltyO Σ := λI φ1 φ2,
   v, φ1 v φ2 v.
Infix "⊆" := subtype_lty : bi_scope.
Notation "X ⊆@{ Σ } Y" := (subtype_lty (Σ := Σ) X Y) (at level 70, only parsing) : bi_scope.
Notation "X ⊆ Y ⊆ Z" := (X Y Y Z)%I : bi_scope.
Notation "X ⊆ Y ⊆ Z ⊆ W" := (X Y Y Z Z W)%I (at level 70, Y, Z at next level) : bi_scope.

Section subtype_lty.
  Context {Σ}.

  #[global] Instance subtype_lty_ne : NonExpansive2 (subtype_lty (Σ := Σ)).
  Proof. solve_proper_ho. Qed.
  #[global] Instance subtype_lty_proper : Proper2 (subtype_lty (Σ := Σ)) :=
    ne_proper_2 _.

  Lemma subtype_refl {T} : T ⊆@{Σ} T.
  Proof. by iIntros "%v $". Qed.

  Lemma subtype_trans {T1} T2 {T3} :
    T1 T2 -∗ T2 T3 -∗ T1 ⊆@{Σ} T3.
  Proof. iIntros "H1 H2 %v HT1". iApply ("H2" with "(H1 HT1)"). Qed.
End subtype_lty.

"Open Logical TYpes": persistent Iris predicates over environments and values.

Definition olty Σ := astream env lty Σ.
Notation oltyO Σ := (astream -d> env -d> ltyO Σ).

Notation olty_car τ := (λ args ρ v, lty_carargs ρ) v).
Definition oApp {Σ} : olty Σ hoEnvD Σ := λ φ, olty_car φ.

Definition hoLty Σ := astream lty Σ.
Definition hoLtyO Σ := astream -d> ltyO Σ.
Notation hoLty_car τ := (λ args v, lty_carargs) v).
Notation HoLty φ := (λ args, Lty (λI v, φ args v)).

Definition envApply {Σ} : oltyO Σ env hoLtyO Σ :=
  λ T, flip T.
#[global] Instance : Params (@envApply) 1 := {}.
#[global] Instance envApply_proper Σ :
  Proper ((≡) ==> (=) ==> (≡)) (envApply (Σ := Σ)).
Proof. solve_proper_ho. Qed.

Definition packHoLtyO {Σ} (φ : hoD Σ) : hoLtyO Σ :=
  HoLty (λI args v, φ args v).
#[global] Instance : Params (@packHoLtyO) 1 := {}.
#[global] Instance packHoLtyO_contractive {Σ} :
  Contractive (packHoLtyO (Σ := Σ)).
Proof. solve_contractive_ho. Qed.
#[global] Instance packHoLtyO_proper {Σ} : Proper1 (packHoLtyO (Σ := Σ)) :=
  contractive_proper _.

Substitution over olty.

Section olty_subst.
  Context {Σ}.
  Implicit Types (φ : hoEnvD Σ) (τ : olty Σ).

  Lemma olty_eq τ1 τ2 :
    ( args ρ, olty_car τ1 args ρ = olty_car τ2 args ρ)
    τ1 = τ2.
  Proof. intros × Heq; f_extargs; f_ext ⇒ ρ. apply lty_eq, Heq. Qed.

  Lemma olty_eq' τ1 τ2 : olty_car τ1 = olty_car τ2 τ1 = τ2.
  Proof.
    intros Heq; apply olty_eqargs ρ.
    apply (f_equal_dep _ _ ρ
              (f_equal_dep _ _ args Heq)).
  Qed.

  Lemma lift_olty_eq {τ1 τ2 : oltyO Σ} {args ρ v} :
    τ1 τ2 τ1 args ρ v τ2 args ρ v.
  Proof. apply. Qed.

  Lemma olty_equivI (T1 T2 : oltyO Σ) :
    ( args ρ v, T1 args ρ v T2 args ρ v) ⊣⊢@{iPropI Σ} (T1 T2).
  Proof.
    repeat setoid_rewrite discrete_fun_equivI.
    f_equivargs; f_equiv=>ρ.
    by rewrite -iPPred_equivI discrete_fun_equivI.
  Qed.

  #[global] Instance ids_hoEnvD : Ids (hoEnvD Σ) := λ _, inhabitant.
  #[global] Instance rename_hoEnvD : Rename (hoEnvD Σ) :=
    λ r φ args ρ, φ args (r >>> ρ).
  #[global] Program Instance hsubst_hoEnvD : HSubst vl (hoEnvD Σ) :=
    λ sb φ args ρ, φ args (sb >> ρ).

  Ltac renLemmas_hoEnvD :=
    hnf; rewrite /hsubst /hsubst_hoEnvD ⇒ /= *;
    do 2 (apply FunctionalExtensionality.functional_extensionality_dep ⇒ ?); autosubst.

  #[global] Instance HSubstLemmas_hoEnvD : HSubstLemmas vl (hoEnvD Σ).
  Proof. split ⇒ //; renLemmas_hoEnvD. Qed.

  #[global] Instance : Sort (hoEnvD Σ) := {}.

  Lemma hoEnvD_subst_compose_ind φ args ρ1 ρ2 v : φ.|[ρ1] args ρ2 v ⊣⊢ φ args (ρ1 >> ρ2) v.
  Proof. done. Qed.

  Lemma hoEnvD_subst_compose φ args ρ1 ρ2 ρ3 :
    ρ1 >> ρ2 = ρ3 φ.|[ρ1] args ρ2 φ args ρ3.
  Proof. by move⇒ <-. Qed.

  Lemma hoEnvD_weaken_one φ args ρ :
    shift φ args ρ φ args (stail ρ).
  Proof. apply hoEnvD_subst_compose. autosubst. Qed.

  Lemma hoEnvD_subst_one φ v args ρ :
    φ.|[v/] args ρ φ args (v.[ρ] .: ρ).
  Proof. apply hoEnvD_subst_compose. autosubst. Qed.

  (* XXX these alternative statements infer @ids vl ρ instead of the correct @ids vl ids_vl. *)
  (* Lemma hoEnvD_subst_ids φ ρ {args} : φ args ρ ≡ φ.|ρ args ids. *)
  (* Program Lemma hoEnvD_subst_ids φ ρ {args} : φ args ρ ≡ φ.|ρ args ids. *)
  Lemma hoEnvD_subst_ids φ ρ {args} : φ args ρ φ.|[ρ] args (@ids vl ids_vl).
  Proof. symmetry. apply hoEnvD_subst_compose. autosubst. Qed.

  Lemma hoEnvD_finsubst_commute_cl φ σ ρ v (HclT : nclosed φ (length σ)) args :
    φ.|[ σ] args ρ v φ args ( σ.|[ρ]) v.
  Proof.
    rewrite hoEnvD_subst_compose_ind !(hoEnvD_subst_ids φ) -hsubst_comp.
    (* *The* step requiring HclT. *)
    by rewrite (subst_compose HclT).
  Qed.

  Definition Olty (olty_car : astream (var vl) vl iProp Σ)
    `{ args ρ v, Persistent (olty_car args ρ v)} : oltyO Σ :=
      λ args ρ, Lty (olty_car args ρ).

  #[global] Instance ids_olty : Ids (olty Σ) := λ _, inhabitant.
  #[global] Program Instance rename_olty : Rename (olty Σ) :=
    λ r τ, Olty (rename r (olty_car τ)).
  #[global] Program Instance hsubst_olty : HSubst vl (olty Σ) :=
    λ sb τ, Olty ((olty_car τ).|[sb]).

  #[global] Instance hsubstLemmas_olty : HSubstLemmas vl (olty Σ).
  Proof.
    split ⇒ [T|//|s1 s2 T]; apply olty_eqargs ρ; f_extv.
    all: by rewrite /hsubst/= ?hsubst_id -?hsubst_comp.
  Qed.

  #[global] Instance : Sort (olty Σ) := {}.

  #[global] Instance hsubst_olty_ne ρ :
    NonExpansive (hsubst (outer := oltyO Σ) ρ).
  Proof. solve_proper_ho. Qed.

  #[global] Instance hsubst_olty_proper ρ :
    Proper1 (hsubst (outer := oltyO Σ) ρ) := ne_proper _.

  Lemma olty_subst_compose_ind τ args ρ1 ρ2 v : τ.|[ρ1] args ρ2 v ⊣⊢ τ args (ρ1 >> ρ2) v.
  Proof. apply hoEnvD_subst_compose_ind. Qed.

  Lemma olty_subst_compose τ args ρ1 ρ2 ρ3 :
    ρ1 >> ρ2 = ρ3 τ.|[ρ1] args ρ2 τ args ρ3.
  Proof. apply hoEnvD_subst_compose. Qed.

  Lemma olty_weaken_one τ args ρ :
    shift τ args ρ τ args (stail ρ).
  Proof. apply hoEnvD_weaken_one. Qed.

  Lemma olty_subst_one τ v w args ρ :
    τ.|[v/] args ρ w τ args (v.[ρ] .: ρ) w.
  Proof. apply hoEnvD_subst_one. Qed.

  Lemma olty_subst_ids τ ρ {args} : τ args ρ τ.|[ρ] args ids.
  Proof. symmetry. apply olty_subst_compose. autosubst. Qed.

  Lemma olty_finsubst_commute_cl τ σ ρ v (HclT : nclosed τ (length σ)) args :
    τ.|[ σ] args ρ v τ args ( σ.|[ρ]) v.
  Proof.
    rewrite olty_subst_compose_ind !(olty_subst_ids τ) -hsubst_comp.
    (* *The* step requiring HclT. *)
    by rewrite (subst_compose HclT).
  Qed.

Shift a type; oShift T and shift T have different reduction behavior.
  Definition oShift (T : oltyO Σ) :=
    Olty (λ args ρ v, T args (stail ρ) v).

  (* Holds definitionally when id_subst does, so for any reasonable concrete language. *)

  #[global] Instance oShift_ne : NonExpansive oShift.
  Proof. solve_proper_ho. Qed.
  #[global] Instance oShift_proper : Proper1 oShift :=
    ne_proper _.
End olty_subst.

#[global] Instance : Params (@oShift) 1 := {}.

Section oShift.
  Context {Σ}.

  Lemma oShift_eq (T : oltyO Σ) : oShift T shift T.
  Proof. moveargs ρ v /=. by rewrite hoEnvD_weaken_one. Qed.

  Lemma oShift_subst (T : olty Σ) ρ :
    (oShift T).|[up ρ] oShift T.|[ρ].
  Proof.
    (* Working but slow proof: *)
    (* rewrite !oShift_eq; autosubst. *)
    moveargs ξ v; rewrite /= /hsubst /hsubst_hoEnvD /stail/=;
      apply eq_equiv; do 2 f_equal; autosubst.
  Qed.
End oShift.

Notation oClose τ := (τ anil) (only parsing).

Definition interp_expr `{dlangG Σ} (φ : hoEnvD Σ) : envPred tm Σ :=
  λI ρ t, WP t {{ oClose φ ρ }}.
#[global] Arguments interp_expr /.

Notation "sE⟦ τ ⟧" := (interp_expr τ).

Semantic typing contexts Γ; the paper only uses syntactic typing contexts Γ.
Definition sCtx Σ := listO (oltyO Σ).

Part of the definition of G Γ . Define when an environment ρ conforms to a semantic typing context Γ, that is a list of semantic types.
Reserved Notation "sG⟦ Γ ⟧* ρ" (at level 10).
Fixpoint env_oltyped `{dlangG Σ} (ρ : var vl) (Γ : sCtx Σ) : iProp Σ :=
  match Γ with
  | φ :: Γ'sG Γ' ⟧* (stail ρ) oClose φ ρ (shead ρ)
  | []True
  end
where "sG⟦ Γ ⟧* ρ" := (env_oltyped ρ Γ).
#[global] Instance : Params (@env_oltyped) 4 := {}.

Section env_oltyped.
  Context `{dlangG Σ}.

  Definition env_oltyped_nil ρ : sG [] ⟧* ρ ⊣⊢ True := reflexivity _.
  Definition env_oltyped_cons ρ τ (Γ : sCtx Σ) :
    sG τ :: Γ ⟧* ρ ⊣⊢ sG Γ ⟧* (stail ρ) oClose τ ρ (shead ρ) := reflexivity _.

  #[global] Instance env_oltyped_persistent (Γ : sCtx Σ) ρ: Persistent (sG Γ ⟧* ρ).
  Proof. elim: Γ ρ ⇒ [|τ Γ IHΓ] ρ /=; apply _. Qed.

  #[global] Instance env_oltyped_ne ρ : NonExpansive (env_oltyped ρ).
  Proof.
    move: ρ ⇒ + n G1 G2.
    elim: G1 G2 ⇒ [|T1 G1 IHG1] [|T2 G2] ρ /=; [done|inversion 1..|] ⇒
      /(Forall2_cons_1 _ _ _ _) [HT HG]; f_equiv; [apply IHG1, HG|apply HT].
  Qed.

  #[global] Instance env_oltyped_proper ρ :
    Proper1 (env_oltyped ρ) := ne_proper _.

  Lemma s_interp_env_lookup Γ ρ (τ : olty Σ) x :
    Γ !! x = Some τ
    sG Γ ⟧* ρ -∗ oClose (shiftN x τ) ρ (ρ x).
  Proof.
    elim: Γ ρ x ⇒ [//|τ' Γ' IHΓ] ρ x Hx /=.
    iDestruct 1 as "[Hg Hv]". move: x Hx ⇒ [ [->] | x Hx] /=.
    - rewrite hsubst_id. iApply "Hv".
    - rewrite hrenS.
      iApply (hoEnvD_weaken_one (shiftN x τ)).
      iApply (IHΓ (stail ρ) x Hx with "Hg").
  Qed.
End env_oltyped.

Constructors for language-independent semantic types, corresponding to

, , T₁ T₂, T₁ T₂, μ x. T, .

We can define once and for all basic "logical" types: top, bottom, and, or, later and μ.

Semantic type constructor for
Definition oTop {Σ} : oltyO Σ := .

Semantic type constructor for
Definition oBot {Σ} : oltyO Σ := .

Semantic type constructor for ▷^n T
Definition oLaterN {Σ} n (τ : oltyO Σ) := Olty (λI args ρ v, ▷^n τ args ρ v).
Semantic type constructor for T
Notation oLater := (oLaterN 1).
#[global] Instance : Params (@oLaterN) 2 := {}.

Semantic type constructor for T₁ T₂
Definition oAnd {Σ} (τ1 τ2 : oltyO Σ) : oltyO Σ := Olty (λI args ρ v, τ1 args ρ v τ2 args ρ v).
Semantic type constructor for T₁ T₂
Definition oOr {Σ} (τ1 τ2 : oltyO Σ) : oltyO Σ := Olty (λI args ρ v, τ1 args ρ v τ2 args ρ v).
Semantic type constructor for μ x. T
Definition oMu {Σ} (τ : oltyO Σ) : oltyO Σ := Olty (λI args ρ v, τ args (v .: ρ) v).

#[global] Instance : Params (@oAnd) 1 := {}.
#[global] Instance : Params (@oOr) 1 := {}.
#[global] Instance : Params (@oMu) 1 := {}.

Section olty_proper.
  Context {Σ}.

  Definition olty0 (φ : envD Σ) `{ ρ v, Persistent ρ v)} : oltyO Σ :=
    Olty (aopen φ).

  #[global] Instance oLaterN_ne m : NonExpansive (oLaterN (Σ := Σ) m).
  Proof. solve_proper_ho. Qed.
  #[global] Instance oLaterN_proper m : Proper1 (oLaterN m) :=
    ne_proper _.

  #[global] Instance oAnd_ne : NonExpansive2 (oAnd (Σ := Σ)).
  Proof. solve_proper_ho. Qed.
  #[global] Instance oAnd_proper : Proper2 oAnd :=
    ne_proper_2 _.

  #[global] Instance oOr_ne : NonExpansive2 (oOr (Σ := Σ)).
  Proof. solve_proper_ho. Qed.
  #[global] Instance oOr_proper : Proper2 oOr :=
    ne_proper_2 _.

  #[global] Instance oMu_ne : NonExpansive (oMu (Σ := Σ)).
  Proof. solve_proper_ho. Qed.
  #[global] Instance oMu_proper : Proper1 oMu :=
    ne_proper _.
End olty_proper.

Section olty_lemmas.
  Context {Σ}.
  Implicit Types (φ : hoEnvD Σ) (τ : oltyO Σ).

  #[global] Instance top_olty : Top (oltyO Σ) := Olty .
  #[global] Instance bot_olty : Bottom (oltyO Σ) := Olty .

oLaterN

  Lemma oLaterN_eq n τ args ρ v : oLaterN n τ args ρ v = (▷^n τ args ρ v)%I.
  Proof. done. Qed.

  Lemma oLaterN_0 (T : olty Σ) :
    oLaterN 0 T T.
  Proof. done. Qed.

  Lemma oLaterN_S (T : olty Σ) n :
    oLaterN (S n) T oLater (oLaterN n T).
  Proof. done. Qed.

  Lemma oLaterN_Sr (T : olty Σ) n :
    oLaterN (S n) T oLaterN n (oLater T).
  Proof. move ⇒ ???/=. by rewrite swap_later. Qed.

  Lemma oLaterN_plus {m n} {T : olty Σ} :
    oLaterN (m + n) T oLaterN m (oLaterN n T).
  Proof. move⇒ ???. by rewrite/= laterN_add. Qed.

  Lemma oMu_eq (τ : oltyO Σ) args ρ v : oMu τ args ρ v = τ args (v .: ρ) v.
  Proof. done. Qed.

  Lemma oMu_shift (T : oltyO Σ) : oMu (shift T) T.
  Proof. moveargs ρ v. by rewrite /= (hoEnvD_weaken_one T args _ v). Qed.

  Lemma sTEq_oLaterN_oTop n :
    oLaterN (Σ := Σ) n oTop oTop.
  Proof. iIntros; eauto. Qed.

  Lemma sTEq_oLaterN_oMu (τ : oltyO Σ) n :
    oLaterN n (oMu τ) oMu (oLaterN n τ).
  Proof. done. Qed.

  Lemma sTEq_oLaterN_oAnd (τ1 τ2 : oltyO Σ) n :
    oLaterN n (oAnd τ1 τ2) oAnd (oLaterN n τ1) (oLaterN n τ2).
  Proof. moveargs ρ v /=. by rewrite laterN_and. Qed.

  Lemma sTEq_oLaterN_oOr (τ1 τ2 : oltyO Σ) n :
    oLaterN n (oOr τ1 τ2) oOr (oLaterN n τ1) (oLaterN n τ2).
  Proof. moveargs ρ v /=. by rewrite laterN_or. Qed.
End olty_lemmas.
End Lty.