D.Dot.examples.sem.syntyp_lemmas.examples_lr_syn

From iris.proofmode Require Import proofmode.

From D Require Import iris_prelude swap_later_impl.
From D.Dot Require Import rules path_repl examples_lr.
From D.Dot Require Export sem_unstamped_typing.
From D.Dot Require Export old_fundamental.

Implicit Types (Σ : gFunctors).
Implicit Types (v : vl) (e : tm) (d : dm) (ds : dms) (ρ : env) (l : label).

Set Implicit Arguments.
Unset Strict Implicit.

Section Lemmas.
  Context `{HdotG : !dlangG Σ}.

  (* Instance foo : subrelation (≡@{oltyO Σ}) (eq ==> eq ==> equiv)*)

For https://github.com/lampepfl/dotty/blob/85962b19ddf4f1909189bf07b40f9a05849f9bbf/compiler/src/dotty/tools/dotc/core/TypeComparer.scalaL553.
  Lemma singleton_Mu_dotty_approx_0 {Γ p i T1 T2} `{SwapPropI Σ} :
    iterate TLater i (TAnd T1 (TSing (shift p))) :: Γ T1, i <: T2, i -∗
    Γ p p : TMu T1, i -∗
    Γ TSing p, i <: TMu T2, i.
  Proof.
    (* Demonstrate why this rule is not easy to derive.*)
    (* rewrite /istpi -!sstpd_to_sstpi; iIntros "Hsub Hp".
    iApply sSngl_Stp_Self.
    iApply (sP_Sub with "Hp").
    iApply Mu_Stp_Mu.
    (* We're stuck! *)
    Restart.
    rewrite /istpi -!sstpd_to_sstpi; iIntros "Hsub Hp".
    iApply sStp_Trans. {
      iApply sStp_And.
      - iApply (sSngl_Stp_Self with "Hp").
      - iApply sStp_Refl.
    }
    iApply sStp_Skolem_P'.
    iApply sP_Sub. { iApply (sP_LaterN (i := 0)). by iApply sP_Var0. }
    rewrite fmap_cons iterate_TLater_oLater.
    (* We're stuck again! *)
    Fail iApply "Hsub".
    Restart. *)

    rw. pupd. iIntros "#Hsub #Hp !> %ρ %v #Hg Heq".
    iSpecialize ("Hp" with "Hg").
    iAssert (▷^i T1 (v .: ρ) v)%I as "#HT1".
    by iNext i; iDestruct "Heq" as %Heq;
      rewrite (alias_paths_elim_eq _ Heq) path_wp_pv_eq.
    iApply ("Hsub" $! (v .: ρ) v with "[#$Hg] HT1").
    iEval rewrite /= hsubst_comp. iFrame "Heq HT1".
  Qed.

What Dotty actually checks uses substitution twice. A simple case is the following:
  Lemma singleton_Mu_dotty_approx_1 {Γ p i T1 T2 T1' T2'}
    (Hrepl1 : T1 .Tp[ p /]~ T1') (Hrepl2 : T2 .Tp[ p /]~ T2') :
    Γ T1', i <: T2', i -∗
    Γ p p : TMu T1, i -∗
    Γ TSing p, i <: TMu T2, i.
  Proof.
    rw. pupd. iIntros "#Hsub #Hp !> %ρ %v #Hg /= Heq"; iSpecialize ("Hp" with "Hg").
    iSpecialize ("Hsub" $! ρ v with "[#$Hg] [#]"); iNext i;
      iDestruct "Heq" as %Heq;
      rewrite -(psubst_one_repl Hrepl1, psubst_one_repl Hrepl2) //
        (alias_paths_elim_eq _ Heq) path_wp_pv_eq //.
  Qed.

  (*
     Γ, z : T₁ᶻ ⊨ T₁ᶻ <: T₂
     ----------------------------------------------- (<:-Bind-1)
     Γ ⊨ μ (x : T₁ˣ) <: T₂
  *)

  (* Derive this rule from Mu_Stp_Mu and Mu_Stp. *)
  Lemma Stp_Bind_1 {Γ T1 T2 i} `{SwapPropI Σ} :
    iterate TLater i T1 :: Γ T1 <:[i] shift T2 -∗
    Γ TMu T1 <:[i] T2.
  Proof.
    iIntros "Hstp"; iApply (Stp_Trans with "[-] []").
    by iApply Mu_Stp_Mu. iApply Mu_Stp.
  Qed.

  (*
     Γ, z : T₁ᶻ ⊨ T₁ <: T₂ᶻ
     ----------------------------------------------- (<:-Bind-2)
     Γ ⊨ T₁ <: μ(x : T₂ˣ)
  *)

  Lemma Stp_Bind_2 {Γ T1 T2 i} `{SwapPropI Σ} :
    iterate TLater i (shift T1) :: Γ shift T1 <:[i] T2 -∗
    Γ T1 <:[i] TMu T2.
  Proof.
    iIntros "Hstp"; iApply (Stp_Trans with "[] [-]").
    iApply Stp_Mu. by iApply Mu_Stp_Mu.
  Qed.

  Lemma T_Mu_I {Γ} T v : Γ tv v : T.|[v/] -∗ Γ tv v : TMu T.
  Proof. rw. rewrite interp_commute_subst. apply sT_Mu_I. Qed.

  Lemma T_Mu_E {Γ} T v : Γ tv v : TMu T -∗ Γ tv v : T.|[v/].
  Proof. rw. rewrite interp_commute_subst. apply sT_Mu_E. Qed.

  Lemma suetp_var_lift1 {Γ} x T1 T2 :
    □(Γ s tv (ids x) : T1 -∗ Γ s tv (ids x) : T2)
    Γ su tv (ids x) : T1 -∗ Γ su tv (ids x) : T2.
  Proof.
    iIntros "#Hr".
    rewrite suetp_var. pupd; iIntros "#H1 !>".
    by iExists (tv (ids x)); iSplit; last iApply ("Hr" with "H1").
  Qed.

  Lemma uT_Mu_I {Γ} T x : Γ u tv (ids x) : T.|[ids x/] -∗ Γ u tv (ids x) : TMu T.
  Proof. iApply suetp_var_lift1; iApply T_Mu_I. Qed.

  Lemma uT_Mu_E {Γ} T x : Γ u tv (ids x) : TMu T -∗ Γ u tv (ids x) : T.|[ids x/].
  Proof. iApply suetp_var_lift1; iApply T_Mu_E. Qed.
End Lemmas.