D.Dot.examples.sem.syntyp_lemmas.sub_lr_syn
From iris.proofmode Require Import proofmode.
From D Require Import iris_prelude swap_later_impl.
From D.Dot Require Import rules path_repl unary_lr dsub_lr defs_lr binding_lr sub_lr.
Implicit Types (Σ : gFunctors)
(v w : vl) (e : tm) (d : dm) (ds : dms) (p : path)
(ρ : env) (l : label).
Section defs.
Context {Σ}.
Definition istpi `{!dlangG Σ} Γ T1 T2 i j := sstpi i j V⟦Γ⟧* V⟦T1⟧ V⟦T2⟧.
End defs.
Notation "Γ ⊨ T1 , i <: T2 , j" := (istpi Γ T1 T2 i j) (at level 74, T1, T2, i, j at next level).
Section judgment_lemmas.
Context `{!dlangG Σ}.
From D Require Import iris_prelude swap_later_impl.
From D.Dot Require Import rules path_repl unary_lr dsub_lr defs_lr binding_lr sub_lr.
Implicit Types (Σ : gFunctors)
(v w : vl) (e : tm) (d : dm) (ds : dms) (p : path)
(ρ : env) (l : label).
Section defs.
Context {Σ}.
Definition istpi `{!dlangG Σ} Γ T1 T2 i j := sstpi i j V⟦Γ⟧* V⟦T1⟧ V⟦T2⟧.
End defs.
Notation "Γ ⊨ T1 , i <: T2 , j" := (istpi Γ T1 T2 i j) (at level 74, T1, T2, i, j at next level).
Section judgment_lemmas.
Context `{!dlangG Σ}.