D.Dot.syntyp_lemmas.later_sub_syn

When is a context weaker than another? Semantic version.


From D Require Import proper.
From D.Dot Require Import later_sub_sem.
From D.Dot Require Import unary_lr.
From D.Dot Require Import typing_aux_defs.
From D.Dot Require Import type_eq.
From D.Dot Require Import dsub_lr. (* XXX *)

Section TypeEquiv.
  Context `{HdlangG : !dlangG Σ}.

  Lemma fundamental_mut_equiv_clty :
    ( T1 T2 (H : |- T1 == T2), C T1 C T2 )
    ( K1 K2 (H : |-K K1 == K2), K K1 K K2 ).
  Proof.
    apply: type_kind_eq_mut_ind; intros *; rw; intros.
    all: unfold pty_interp.
    by rewrite cAnd_olty2clty sTEq_oLaterN_oAnd.
    by rewrite sTEq_oLaterN_oOr.
    all: try reflexivity.
    all: repeat first [assumption | symmetry; assumption | no_eq_f_equiv].
    by etrans.
    by etrans.
  Qed.

  Lemma fundamental_type_equiv_clty T1 T2 (H : |- T1 == T2) :
    C T1 C T2 .
  Proof. by apply fundamental_mut_equiv_clty. Qed.
  Lemma fundamental_kind_equiv_clty K1 K2 (H : |-K K1 == K2) :
    K K1 K K2 .
  Proof. by apply fundamental_mut_equiv_clty. Qed.

  Lemma fundamental_type_equiv_olty T1 T2 :
    |- T1 == T2 V T1 V T2 .
  Proof. apply fundamental_type_equiv_clty. Qed.

  Lemma idstp_respects_type_equiv Γ ds T1 T2 (Heq : |- T1 == T2) :
    Γ ds ds : T1 -∗ Γ ds ds : T2.
  Proof. by apply equiv_entails_1_1, sdstp_proper, fundamental_type_equiv_clty. Qed.

  Lemma ietp_respects_type_equiv Γ e T1 T2 (Heq : |- T1 == T2) :
    Γ e : T1 -∗ Γ e : T2.
  Proof. by apply equiv_entails_1_1, setp_proper, fundamental_type_equiv_olty. Qed.

  Lemma ietp_teq_proper Γ : Proper (type_equiv ==> (=) ==> (⊢)) (ietp Γ).
  Proof. repeat intro; subst. exact: ietp_respects_type_equiv. Qed.

  (* XXX All these instances are local, because setoid rewriting doesn't work
  for some reason, but I don't feel like debugging it. *)

  Instance istpd_teq_proper Γ i :
    Proper (type_equiv ==> type_equiv ==> (⊣⊢)) (istpd i Γ).
  Proof.
    by repeat intro; apply sstpd_proper; [|
      exact: fundamental_type_equiv_olty..].
  Qed.

  #[global] Instance : Params (@istpd) 4 := {}.

  Lemma Stp_Eq i T1 T2 Γ :
    |- T1 == T2 Γ T1 <:[i] T2.
  Proof.
    intros Heq.
    iApply istpd_teq_proper; [eassumption|reflexivity|iApply sStp_Refl].
  Qed.
End TypeEquiv.

Definition ty_sub `{HdlangG : !dlangG Σ} T1 T2 := sT V T1 <: V T2 .
Notation "⊨T T1 <: T2" := (ty_sub T1 T2) (at level 74, T1, T2 at next level).

Definition ctx_sub `{HdlangG : !dlangG Σ} Γ1 Γ2 : Prop := sG V Γ1 ⟧* <:* V Γ2 ⟧*.
Notation "⊨G Γ1 <:* Γ2" := (ctx_sub Γ1 Γ2) (at level 74, Γ1, Γ2 at next level).

Section CtxSub.
  Context `{HdlangG : !dlangG Σ}.
  Implicit Type (T : ty) (Γ : ctx).

Basic lemmas about ctx_sub.

  #[global] Instance : RewriteRelation ty_sub := {}.
  #[global] Instance : PreOrder ty_sub.
  Proof. rewrite /ty_sub; split; first done. by movex y z H1 H2; etrans. Qed.

  #[global] Instance : RewriteRelation ctx_sub := {}.
  #[global] Instance : PreOrder ctx_sub.
  Proof. rewrite /ctx_sub; split; first done. by movex y z H1 H2; etrans. Qed.

  #[global] Instance cons_ctx_sub_mono : Proper (ty_sub ==> ctx_sub ==> ctx_sub) cons.
  Proof. rewrite /ty_sub /ctx_sub. solve_proper. Qed.
  #[global] Instance cons_ctx_sub_flip_mono : Proper (flip ty_sub ==> flip ctx_sub ==> flip ctx_sub) cons.
  Proof. solve_proper. Qed.

  #[global] Instance ietp_mono : Proper (flip ctx_sub ==> (=) ==> (=) ==> (⊢)) ietp.
  Proof.
    rewrite /ctx_sub /flip /ietpΓ1 Γ2 Hweak ??????; subst. by rewrite Hweak.
  Qed.

  #[global] Instance ietp_flip_mono :
    Proper (ctx_sub ==> flip (=) ==> flip (=) ==> flip (⊢)) ietp.
  Proof. apply: flip_proper_4. Qed.

  #[global] Instance istpd_mono i :
    Proper (flip ctx_sub ==> (=) ==> (=) ==> (⊢)) (istpd i).
  Proof.
    rewrite /ctx_sub /flip /istpdΓ1 Γ2 Hweak ??????; subst.
    by rewrite Hweak.
  Qed.
  #[global] Instance istpi_flip_mono i :
    Proper (ctx_sub ==> flip (=) ==> flip (=) ==> flip (⊢)) (istpd i).
  Proof. apply: flip_proper_4. Qed.

  #[global] Instance TLater_mono : Proper (ty_sub ==> ty_sub) TLater.
  Proof. moveT1 T2. by rewrite /ty_sub !vlr =>->. Qed.
  #[global] Instance TLater_flip_mono :
    Proper (flip ty_sub ==> flip ty_sub) TLater.
  Proof. apply: flip_proper_2. Qed.

  Lemma fmap_TLater_oLater Γ : V TLater <$> Γ ⟧* oLater <$> V Γ ⟧*.
  Proof. elim: Γ ⇒ [//| T Γ IH]. rw. by rewrite IH. Qed.

  Lemma env_TLater_commute Γ ρ : G TLater <$> Γ ρ ⊣⊢ G Γ ρ.
  Proof. by rewrite -senv_TLater_commute fmap_TLater_oLater. Qed.

The strength ordering of contexts lifts the strength ordering of types.
  Lemma env_lift_sub f g {Γ} (Hle : T, T f T <: g T) :
    G f <$> Γ <:* g <$> Γ.
  Proof. elim: Γ ⇒ [//| T Γ IH] ρ; cbn. by rewrite (Hle T _ _) -(IH _). Qed.

  Lemma env_lift_sub' f g Γ {Γ1 Γ2} :
    Γ1 = f <$> Γ Γ2 = g <$> Γ
    ( T, T f T <: g T)
    G Γ1 <:* Γ2.
  Proof. move ⇒ → → Hweak. exact: env_lift_sub. Qed.

  (* It's not immediate to generalize fmap_TLater_proper to fmap C for a
  type constructor C. Fpr instance, the following is hopeless. *)

  (* Lemma fmap_ctx_proper C
    (Hle : ∀ T1 T2, ⊨T T1 <: T2 → ⊨T C T1 <: C T2) :
    Proper (ctx_sub ==> ctx_sub) (fmap C).
  Proof.
    intros G1 G2. elim: G2 G1 => |T2 G2 IHG2 |T1 G1 HG ρ //; cbn. *)


  #[global] Instance fmap_TLater_mono :
    Proper (ctx_sub ==> ctx_sub) (fmap TLater).
  Proof. intros xs ys Hl ?. by rewrite !env_TLater_commute (Hl _). Qed.
  #[global] Instance fmap_TLater_flip_mono :
    Proper (flip ctx_sub ==> flip ctx_sub) (fmap TLater).
  Proof. apply: flip_proper_2. Qed.

  #[global] Instance TAnd_mono : Proper (ty_sub ==> ty_sub ==> ty_sub) TAnd.
  Proof. intros x y Hl x' y' Hl' ??. by rewrite !vlr /= (Hl _ _) (Hl' _ _). Qed.
  #[global] Instance TAnd_flip_mono :
    Proper (flip ty_sub ==> flip ty_sub ==> flip ty_sub) TAnd.
  Proof. apply: flip_proper_3. Qed.

  #[global] Instance TOr_mono : Proper (ty_sub ==> ty_sub ==> ty_sub) TOr.
  Proof. intros x y Hl x' y' Hl' ??. by rewrite !vlr /= (Hl _ _) (Hl' _ _). Qed.
  #[global] Instance TOr_flip_mono :
    Proper (flip ty_sub ==> flip ty_sub ==> flip ty_sub) TOr.
  Proof. apply: flip_proper_3. Qed.

Ordering of logical strength: unTLater T <: T <: TLater (unTLater T) <: TLater T.
  Lemma ty_sub_TLater T : T T <: TLater T.
  Proof. intros ??. rewrite interp_TLater /=. auto. Qed.

  Lemma unTLater_ty_sub T : T unTLater T <: T.
  Proof. induction T ⇒ //=; [by f_equiv..|]. apply ty_sub_TLater. Qed.

  Lemma ty_sub_id T : T T <: T. Proof. done. Qed.
  Lemma ty_sub_trans T1 T2 T3 : T T1 <: T2 T T2 <: T3 T T1 <: T3.
  Proof. by intros →. Qed.

  Lemma ty_sub_TLater_add T1 T2 :
    T T1 <: T2
    T T1 <: TLater T2.
  Proof. intros →. apply ty_sub_TLater. Qed.

  Lemma ty_distr_TAnd_TLater T1 T2 :
    T TAnd (TLater T1) (TLater T2) <: TLater (TAnd T1 T2).
  Proof.
    (* by rewrite /ty_sub !vlr rewrite sTEq_oLaterN_oAnd. *)
    eapply s_ty_sub_proper. {
      rewrite interp_TAnd.
      by apply oAnd_proper; apply interp_TLater.
    }
    by rewrite interp_TLater interp_TAnd.
    intros ??. by rewrite sTEq_oLaterN_oAnd.
  Qed.

  Lemma ty_distr_TOr_TLater T1 T2 :
    T TOr (TLater T1) (TLater T2) <: TLater (TOr T1 T2).
  Proof.
    (* by rewrite /ty_sub !vlr sTEq_oLaterN_oOr. *)
    eapply s_ty_sub_proper. {
      rewrite interp_TOr.
      by apply oOr_proper; apply interp_TLater.
    }
    by rewrite interp_TLater interp_TOr.
    intros ??. by rewrite sTEq_oLaterN_oOr.
  Qed.

  #[local] Hint Resolve ty_sub_id ty_sub_TLater ty_sub_TLater_add
    ty_distr_TAnd_TLater ty_distr_TOr_TLater unTLater_ty_sub : ctx_sub.

  Lemma ty_sub_TLater_unTLater T : T T <: TLater (unTLater T).
  Proof.
    induction T; simpl; auto with ctx_sub.
    all: rewrite {1}IHT1 {1}IHT2 /=.
    all: auto with ctx_sub.
  Qed.
  #[local] Hint Resolve ty_sub_TLater_unTLater : ctx_sub.

  (* Unused *)
  Lemma TLater_unTLater_ty_sub_TLater T :
    T TLater (unTLater T) <: TLater T.
  Proof. by rewrite unTLater_ty_sub. Qed.

  Lemma fundamental_ty_sub {T1 T2} : T T1 <: T2 T T1 <: T2.
  Proof. induction 1; auto with f_equiv ctx_sub. exact: ty_sub_trans. Qed.
  #[local] Hint Resolve fundamental_ty_sub : ctx_sub.

Lift the above ordering to environments.

  Lemma ctx_sub_nil : G [] <:* []. Proof. done. Qed.

  Lemma unTLater_ctx_sub Γ : G unTLater <$> Γ <:* Γ.
  Proof. eapply env_lift_sub', unTLater_ty_sub; by rewrite ?list_fmap_id. Qed.

  Lemma ctx_sub_TLater Γ : G Γ <:* TLater <$> Γ.
  Proof. eapply env_lift_sub', ty_sub_TLater; by rewrite ?list_fmap_id. Qed.

  Lemma ctx_sub_TLater_unTLater Γ : G Γ <:* TLater <$> (unTLater <$> Γ).
  Proof.
    rewrite -list_fmap_compose.
    eapply env_lift_sub', ty_sub_TLater_unTLater; by rewrite ?list_fmap_id.
  Qed.

  #[local] Hint Resolve ctx_sub_nil ctx_sub_TLater ctx_sub_TLater_unTLater unTLater_ctx_sub : ctx_sub.

  Lemma fundamental_ctx_sub {Γ1 Γ2} : G Γ1 <:* Γ2 G Γ1 <:* Γ2.
  Proof. induction 1; auto with f_equiv ctx_sub. Qed.

  #[local] Hint Resolve fundamental_ctx_sub : ctx_sub.

  Lemma ctx_sub_cons_later T Γ1 Γ2 (Hle : G Γ1 <:* Γ2) :
    G T :: Γ1 <:* TLater T :: Γ2.
  Proof. auto with f_equiv ctx_sub. Qed.

  (* Unused *)
  Lemma TLater_unTLater_TLater_ctx_sub Γ :
    G TLater <$> (unTLater <$> Γ) <:* TLater <$> Γ.
  (* Proof. by rewrite unTLater_ctx_sub. Qed. *)
  Proof. auto with ctx_sub. Qed.

  Lemma ietp_weaken_ctx_syn Γ1 Γ2 {T e} (Hsyn : G Γ1 <:* Γ2) : Γ2 e : T -∗ Γ1 e : T.
  Proof. by apply ietp_mono; first apply (fundamental_ctx_sub Hsyn). Qed.

  Lemma istpd_weaken_ctx_syn Γ1 Γ2 {T1 T2 i} (Hsyn : G Γ1 <:* Γ2) :
    Γ2 T1 <:[i] T2 -∗ Γ1 T1 <:[i] T2.
  Proof. by apply istpd_mono; first apply (fundamental_ctx_sub Hsyn). Qed.

End CtxSub.

Typeclasses Opaque ty_sub.
Typeclasses Opaque ctx_sub.

#[global] Hint Resolve ietp_weaken_ctx_syn fundamental_ctx_sub : ctx_sub.